30 research outputs found

    Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways

    No full text
    The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work, we compared the effect of thyroid hormone and that of anacardic acid, a naturally occurring histone acetylase inhibitor, or both in combination, on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation, we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them, a rapid induction of the transcription factor Castor 1 (CASZ1), important for cardiomyocytes differentiation and maturation during embryonic development, was observed in the presence of AA. In contrast, thyroid hormone (T3) was more effective in stimulating spontaneous firing, thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion, AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways

    Reformulating and optimizing the Mumford–Shah functional on a graph—A faster, lower energy solution

    No full text
    Abstract. Active contour formulations predominate current minimization of the Mumford-Shah functional (MSF) for image segmentation and filtering. Unfortunately, these formulations necessitate optimization of the contour by evolving via gradient descent, which is known for its sensitivity to initialization and the tendency to produce undesirable local minima. In order to reduce these problems, we reformulate the corresponding MSF on an arbitrary graph and apply combinatorial optimization to produce a fast, low-energy solution. The solution provided by this graph formulation is compared with the solution computed via traditional narrow-band level set methods. This comparison demonstrates that our graph formulation and optimization produces lower energy solutions than gradient descent based contour evolution methods in significantly less time. Finally, by avoiding evolution of the contour via gradient descent, we demonstrate that our optimization of the MSF is capable of evolving the contour with non-local movement.

    Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways

    No full text
    The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work, we compared the effect of thyroid hormone and that of anacardic acid, a naturally occurring histone acetylase inhibitor, or both in combination, on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation, we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them, a rapid induction of the transcription factor Castor 1 (CASZ1), important for cardiomyocytes differentiation and maturation during embryonic development, was observed in the presence of AA. In contrast, thyroid hormone (T 3) was more effective in stimulating spontaneous firing, thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion, AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways
    corecore